Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 938
Filtrar
1.
Nat Commun ; 15(1): 3525, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664445

RESUMO

Soft bioelectronic devices exhibit motion-adaptive properties for neural interfaces to investigate complex neural circuits. Here, we develop a fabrication approach through the control of metamorphic polymers' amorphous-crystalline transition to miniaturize and integrate multiple components into hydrogel bioelectronics. We attain an about 80% diameter reduction in chemically cross-linked polyvinyl alcohol hydrogel fibers in a fully hydrated state. This strategy allows regulation of hydrogel properties, including refractive index (1.37-1.40 at 480 nm), light transmission (>96%), stretchability (139-169%), bending stiffness (4.6 ± 1.4 N/m), and elastic modulus (2.8-9.3 MPa). To exploit the applications, we apply step-index hydrogel optical probes in the mouse ventral tegmental area, coupled with fiber photometry recordings and social behavioral assays. Additionally, we fabricate carbon nanotubes-PVA hydrogel microelectrodes by incorporating conductive nanomaterials in hydrogel for spontaneous neural activities recording. We enable simultaneous optogenetic stimulation and electrophysiological recordings of light-triggered neural activities in Channelrhodopsin-2 transgenic mice.


Assuntos
Hidrogéis , Camundongos Transgênicos , Optogenética , Polímeros , Álcool de Polivinil , Animais , Álcool de Polivinil/química , Camundongos , Hidrogéis/química , Optogenética/métodos , Polímeros/química , Nanotubos de Carbono/química , Área Tegmentar Ventral/fisiologia , Microeletrodos , Masculino , Channelrhodopsins/metabolismo , Channelrhodopsins/química , Channelrhodopsins/genética
2.
Nat Commun ; 15(1): 3480, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658537

RESUMO

The analysis of neural circuits has been revolutionized by optogenetic methods. Light-gated chloride-conducting anion channelrhodopsins (ACRs)-recently emerged as powerful neuron inhibitors. For cells or sub-neuronal compartments with high intracellular chloride concentrations, however, a chloride conductance can have instead an activating effect. The recently discovered light-gated, potassium-conducting, kalium channelrhodopsins (KCRs) might serve as an alternative in these situations, with potentially broad application. As yet, KCRs have not been shown to confer potent inhibitory effects in small genetically tractable animals. Here, we evaluated the utility of KCRs to suppress behavior and inhibit neural activity in Drosophila, Caenorhabditis elegans, and zebrafish. In direct comparisons with ACR1, a KCR1 variant with enhanced plasma-membrane trafficking displayed comparable potency, but with improved properties that include reduced toxicity and superior efficacy in putative high-chloride cells. This comparative analysis of behavioral inhibition between chloride- and potassium-selective silencing tools establishes KCRs as next-generation optogenetic inhibitors for in vivo circuit analysis in behaving animals.


Assuntos
Caenorhabditis elegans , Neurônios , Optogenética , Peixe-Zebra , Animais , Caenorhabditis elegans/genética , Neurônios/metabolismo , Neurônios/fisiologia , Optogenética/métodos , Channelrhodopsins/metabolismo , Channelrhodopsins/genética , Humanos , Drosophila , Canais de Potássio/metabolismo , Canais de Potássio/genética , Cloretos/metabolismo , Animais Geneticamente Modificados , Comportamento Animal , Células HEK293 , Drosophila melanogaster
3.
Biophys J ; 123(8): 940-946, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38462839

RESUMO

Anion channelrhodopsin GtACR1 is a powerful optogenetic tool to inhibit nerve activity. Its kinetic mechanism was interpreted in terms of the bacteriorhodopsin photocycle, and the L intermediate was assigned to the open channel state. Here, we report the results of the comparison between the time dependence of the channel currents and the time evolutions of the K-like and L-like spectral forms. Based on the results, we question the current view on GtACR1 kinetics and the assignment of the L intermediate to the open channel state. We report evidence for a red-absorbing intermediate being responsible for channel opening.


Assuntos
Optogenética , Channelrhodopsins/metabolismo , Ânions , Cinética , Optogenética/métodos
4.
Angew Chem Int Ed Engl ; 63(11): e202307555, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38226794

RESUMO

Microbial rhodopsins are retinal membrane proteins that found a broad application in optogenetics. The oligomeric state of rhodopsins is important for their functionality and stability. Of particular interest is the oligomeric state in the cellular native membrane environment. Fluorescence microscopy provides powerful tools to determine the oligomeric state of membrane proteins directly in cells. Among these methods is quantitative photoactivated localization microscopy (qPALM) allowing the investigation of molecular organization at the level of single protein clusters. Here, we apply qPALM to investigate the oligomeric state of the first and most used optogenetic tool Channelrhodopsin-2 (ChR2) in the plasma membrane of eukaryotic cells. ChR2 appeared predominantly as a dimer in the cell membrane and did not form higher oligomers. The disulfide bonds between Cys34 and Cys36 of adjacent ChR2 monomers were not required for dimer formation and mutations disrupting these bonds resulted in only partial monomerization of ChR2. The monomeric fraction increased when the total concentration of mutant ChR2 in the membrane was low. The dissociation constant was estimated for this partially monomerized mutant ChR2 as 2.2±0.9 proteins/µm2 . Our findings are important for understanding the mechanistic basis of ChR2 activity as well as for improving existing and developing future optogenetic tools.


Assuntos
Optogenética , Retina , Channelrhodopsins/genética , Membrana Celular/metabolismo , Retina/metabolismo , Mutação , Microscopia de Fluorescência
5.
Science ; 382(6676): 1314-1318, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-38096275

RESUMO

Although there has been long-standing recognition that stimuli-induced cytosolic pH alterations coincide with changes in calcium ion (Ca2+) levels, the interdependence between protons (H+) and Ca2+ remains poorly understood. We addressed this topic using the light-gated channelrhodopsin HcKCR2 from the pseudofungus Hyphochytrium catenoides, which operates as a H+ conductive, Ca2+ impermeable ion channel on the plasma membrane of plant cells. Light activation of HcKCR2 in Arabidopsis guard cells evokes a transient cytoplasmic acidification that sparks Ca2+ release from the endoplasmic reticulum. A H+-induced cytosolic Ca2+ signal results in membrane depolarization through the activation of Ca2+-dependent SLAC1/SLAH3 anion channels, which enabled us to remotely control stomatal movement. Our study suggests a H+-induced Ca2+ release mechanism in plant cells and establishes HcKCR2 as a tool to dissect the molecular basis of plant intracellular pH and Ca2+ signaling.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Sinalização do Cálcio , Cálcio , Channelrhodopsins , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cálcio/metabolismo , Channelrhodopsins/genética , Channelrhodopsins/metabolismo , Estômatos de Plantas/metabolismo , Prótons , Rhinosporidium , Concentração de Íons de Hidrogênio
6.
Biochemistry (Mosc) ; 88(10): 1555-1570, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38105024

RESUMO

Channelrhodopsins stand out among other retinal proteins because of their capacity to generate passive ionic currents following photoactivation. Owing to that, channelrhodopsins are widely used in neuroscience and cardiology as instruments for optogenetic manipulation of the activity of excitable cells. Photocurrents generated by channelrhodopsins were first discovered in the cells of green algae in the 1970s. In this review we describe this discovery and discuss the current state of research in the field.


Assuntos
Optogenética , Fototaxia , Channelrhodopsins/genética , Channelrhodopsins/metabolismo , Luz , Transporte de Íons
7.
Pflugers Arch ; 475(12): 1409-1419, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37987804

RESUMO

Optogenetics is a technology using light-sensitive proteins to control signaling pathways and physiological processes in cells and organs and has been applied in neuroscience, cardiovascular sciences, and many other research fields. Most commonly used optogenetic actuators are sensitive to blue and green light, but red-light activation would allow better tissue penetration and less phototoxicity. Cyp27c1 is a recently deorphanized cytochrome P450 enzyme that converts vitamin A1 to vitamin A2, thereby red-shifting the spectral sensitivity of visual pigments and enabling near-infrared vision in some aquatic species.Here, we investigated the ability of Cyp27c1-generated vitamin A2 to induce a shift in spectral sensitivity of the light-gated ion channel Channelrhodopsin-2 (ChR2) and its red-shifted homolog ReaChR. We used patch clamp to measure photocurrents at specific wavelengths in HEK 293 cells expressing ChR2 or ReaChR. Vitamin A2 incubation red-shifted the wavelength for half-maximal currents (λ50%) by 6.8 nm for ChR2 and 12.4 nm for ReaChR. Overexpression of Cyp27c1 in HEK 293 cells showed mitochondrial localization, and HPLC analysis showed conversion of vitamin A1 to vitamin A2. Notably, the λ50% of ChR2 photocurrents was red-shifted by 10.5 nm, and normalized photocurrents at 550 nm were about twofold larger with Cyp27c1 expression. Similarly, Cyp27c1 shifted the λ50% of ReaChR photocurrents by 14.3 nm and increased normalized photocurrents at 650 nm almost threefold.Since vitamin A2 incubation is not a realistic option for in vivo applications and expression of Cyp27c1 leads to a greater red-shift in spectral sensitivity, we propose co-expression of this enzyme as a novel strategy for red-shifted optogenetics.


Assuntos
Optogenética , Vitamina A , Humanos , Vitamina A/metabolismo , Células HEK293 , Coração , Channelrhodopsins/genética
8.
Sci Rep ; 13(1): 19490, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37945622

RESUMO

Optogenetics relies on dynamic spatial and temporal control of light to address emerging fundamental and therapeutic questions in cardiac research. In this work, a compact micro-LED array, consisting of 16 × 16 pixels, is incorporated in a widefield fluorescence microscope for controlled light stimulation. We describe the optical design of the system that allows the micro-LED array to fully cover the field of view regardless of the imaging objective used. Various multicellular cardiac models are used in the experiments such as channelrhodopsin-2 expressing aggregates of cardiomyocytes, termed cardiac bodies, and bioartificial cardiac tissues derived from human induced pluripotent stem cells. The pacing efficiencies of the cardiac bodies and bioartificial cardiac tissues were characterized as a function of illumination time, number of switched-on pixels and frequency of stimulation. To demonstrate dynamic stimulation, steering of calcium waves in HL-1 cell monolayer expressing channelrhodopsin-2 was performed by applying different configurations of patterned light. This work shows that micro-LED arrays are powerful light sources for optogenetic control of contraction and calcium waves in cardiac monolayers, multicellular bodies as well as three-dimensional artificial cardiac tissues.


Assuntos
Células-Tronco Pluripotentes Induzidas , Optogenética , Humanos , Optogenética/métodos , Channelrhodopsins/genética , Miócitos Cardíacos/fisiologia
9.
Mol Brain ; 16(1): 77, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37950268

RESUMO

Optogenetics has revolutionised neuroscience research, but at the same time has brought a plethora of new variables to consider when designing an experiment with AAV-based targeted gene delivery. Some concerns have been raised regarding the impact of AAV injection volume and expression time in relation to longitudinal experimental designs. In this study, we investigated the efficiency of optically evoked post-synaptic responses in connection to two variables: the volume of the injected virus and the expression time of the virus. For this purpose, we expressed the blue-shifted ChR2, oChIEF, employing a widely used AAV vector delivery strategy. We found that the volume of the injected virus has a minimal impact on the efficiency of optically-evoked postsynaptic population responses. The expression time, on the other hand, has a pronounced effect, with a gradual reduction in the population responses beyond 4 weeks of expression. We strongly advise to monitor time-dependent expression profiles when planning or conducting long-term experiments that depend on successful and stable channelrhodopsin expression.


Assuntos
Terapia Genética , Vetores Genéticos , Channelrhodopsins/genética , Channelrhodopsins/metabolismo , Optogenética , Dependovirus/metabolismo
10.
Pflugers Arch ; 475(12): 1463-1477, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37863976

RESUMO

Optogenetic actuators are rapidly advancing tools used to control physiology in excitable cells, such as neurons and cardiomyocytes. In neuroscience, these tools have been used to either excite or inhibit neuronal activity. Cell type-targeted actuators have allowed to study the function of distinct cell populations. Whereas the first described cation channelrhodopsins allowed to excite specific neuronal cell populations, anion channelrhodopsins were used to inhibit neuronal activity. To allow for simultaneous excitation and inhibition, opsin combinations with low spectral overlap were introduced. BiPOLES (Bidirectional Pair of Opsins for Light-induced Excitation and Silencing) is a bidirectional optogenetic tool consisting of the anion channel Guillardia theta anion-conducting channelrhodopsin 2 (GtACR2 with a blue excitation spectrum and the red-shifted cation channel Chrimson. Here, we studied the effects of BiPOLES activation in cardiomyocytes. For this, we knocked in BiPOLES into the adeno-associated virus integration site 1 (AAVS1) locus of human-induced pluripotent stem cells (hiPSC), subjected these to cardiac differentiation, and generated BiPOLES expressing engineered heart tissue (EHT) for physiological characterization. Continuous light application activating either GtACR2 or Chrimson resulted in cardiomyocyte depolarization and thus stopped EHT contractility. In contrast, short light pulses, with red as well as with blue light, triggered action potentials (AP) up to a rate of 240 bpm. In summary, we demonstrate that cation, as well as anion channelrhodopsins, can be used to activate stem cell-derived cardiomyocytes with pulsed photostimulation but also to silence cardiac contractility with prolonged photostimulation.


Assuntos
Miócitos Cardíacos , Optogenética , Humanos , Optogenética/métodos , Channelrhodopsins/genética , Miócitos Cardíacos/metabolismo , Ânions/metabolismo , Cátions
11.
J Biol Chem ; 299(11): 105305, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37778732

RESUMO

Previous research of anion channelrhodopsins (ACRs) has been performed using cytoplasmic domain (CPD)-deleted constructs and therefore have overlooked the native functions of full-length ACRs and the potential functional role(s) of the CPD. In this study, we used the recombinant expression of full-length Guillardia theta ACR1 (GtACR1_full) for pH measurements in Pichia pastoris cell suspensions as an indirect method to assess its anion transport activity and for absorption spectroscopy and flash photolysis characterization of the purified protein. The results show that the CPD, which was predicted to be intrinsically disordered and possibly phosphorylated, enhanced NO3- transport compared to Cl- transport, which resulted in the preferential transport of NO3-. This correlated with the extended lifetime and large accumulation of the photocycle intermediate that is involved in the gate-open state. Considering that the depletion of a nitrogen source enhances the expression of GtACR1 in native algal cells, we suggest that NO3- transport could be the natural function of GtACR1_full in algal cells.


Assuntos
Criptófitas , Ânions/metabolismo , Channelrhodopsins/metabolismo , Criptófitas/metabolismo , Transporte de Íons , Nitratos/metabolismo
12.
Elife ; 122023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-37801078

RESUMO

Many channelrhodopsins are permeable to protons. We found that in neurons, activation of a high-current channelrhodopsin, CheRiff, led to significant acidification, with faster acidification in the dendrites than in the soma. Experiments with patterned optogenetic stimulation in monolayers of HEK cells established that the acidification was due to proton transport through the opsin, rather than through other voltage-dependent channels. We identified and characterized two opsins which showed large photocurrents, but small proton permeability, PsCatCh2.0 and ChR2-3M. PsCatCh2.0 showed excellent response kinetics and was also spectrally compatible with simultaneous voltage imaging with QuasAr6a. Stimulation-evoked acidification is a possible source of disruptions to cell health in scientific and prospective therapeutic applications of optogenetics. Channelrhodopsins with low proton permeability are a promising strategy for avoiding these problems.


Assuntos
Neurônios , Prótons , Channelrhodopsins/genética , Concentração de Íons de Hidrogênio , Optogenética
13.
Science ; 381(6665): 1480-1487, 2023 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-37769108

RESUMO

After heart injury, dead heart muscle is replaced by scar tissue. Fibroblasts can electrically couple with myocytes, and changes in fibroblast membrane potential can lead to myocyte excitability, which suggests that fibroblast-myocyte coupling in scar tissue may be responsible for arrhythmogenesis. However, the physiologic relevance of electrical coupling of myocytes and fibroblasts and its impact on cardiac excitability in vivo have never been demonstrated. We genetically engineered a mouse that expresses the optogenetic cationic channel ChR2 (H134R) exclusively in cardiac fibroblasts. After myocardial infarction, optical stimulation of scar tissue elicited organ-wide cardiac excitation and induced arrhythmias in these animals. Complementing computational modeling with experimental approaches, we showed that gap junctional and ephaptic coupling, in a synergistic yet functionally redundant manner, excited myocytes coupled to fibroblasts.


Assuntos
Arritmias Cardíacas , Channelrhodopsins , Cicatriz , Fibroblastos , Miócitos Cardíacos , Animais , Camundongos , Arritmias Cardíacas/genética , Arritmias Cardíacas/fisiopatologia , Cicatriz/patologia , Cicatriz/fisiopatologia , Fibroblastos/fisiologia , Miócitos Cardíacos/fisiologia , Channelrhodopsins/genética , Channelrhodopsins/fisiologia , Optogenética , Conexina 43/genética , Conexina 43/fisiologia , Técnicas de Inativação de Genes
14.
Pflugers Arch ; 475(12): 1375-1385, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37670155

RESUMO

Water transport through water channels, aquaporins (AQPs), is vital for many physiological processes including epithelial fluid secretion, cell migration and adipocyte metabolism. Water flux through AQPs is driven by the osmotic gradient that results from concentration differences of solutes including ions. Here, we developed a novel optogenetic toolkit that combines the light-gated anion channel GtACR1 either with the light-gated K+ channel HcKCR1 or the new Na+ channelrhodopsin HcNCR1 with high Na+ permeability, to manipulate water transport in Xenopus oocytes non-invasively. Water efflux through AQP was achieved by light-activating K+ and Cl- efflux through HcKCR1 and GtACR1. Contrarily, when GtACR1 was co-expressed with HcNCR1, inward movement of Na+ and Cl- was light-triggered, and the resulting osmotic gradient led to water influx through AQP1. In sum, we demonstrate a novel optogenetic strategy to manipulate water movement into or out of Xenopus oocytes non-invasively. This approach provides a new avenue to interfere with water homeostasis as a means to study related biological phenomena across cell types and organisms.


Assuntos
Aquaporinas , Água , Channelrhodopsins/genética , Channelrhodopsins/metabolismo , Água/metabolismo , Aquaporinas/genética , Aquaporinas/metabolismo , Transporte Biológico , Permeabilidade , Oócitos/metabolismo
15.
Biophys J ; 122(20): 4091-4103, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37749886

RESUMO

The most effective tested optogenetic tools available for neuronal silencing are the light-gated anion channel proteins found in the cryptophyte alga Guillardia theta (GtACRs). Molecular mechanisms of GtACRs, including the photointermediates responsible for the open channel state, are of great interest for understanding their exceptional conductance. In this study, the photoreactions of GtACR1 and its D234N, A75E, and S97E mutants were investigated using multichannel time-resolved absorption spectroscopy. For each of the proteins, the analysis showed two early microsecond transitions between K-like and L-like forms and two late millisecond recovery steps. Spectral forms associated with potential molecular intermediates of the proteins were derived and their evolutions in time were analyzed. The results indicate the presence of isospectral intermediates in the photocycles and expand the range of potential intermediates responsible for the open channel state.


Assuntos
Criptófitas , Optogenética , Channelrhodopsins/metabolismo , Ânions/metabolismo , Criptófitas/metabolismo , Optogenética/métodos , Luz
16.
Cell ; 186(20): 4325-4344.e26, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37652010

RESUMO

KCR channelrhodopsins (K+-selective light-gated ion channels) have received attention as potential inhibitory optogenetic tools but more broadly pose a fundamental mystery regarding how their K+ selectivity is achieved. Here, we present 2.5-2.7 Å cryo-electron microscopy structures of HcKCR1 and HcKCR2 and of a structure-guided mutant with enhanced K+ selectivity. Structural, electrophysiological, computational, spectroscopic, and biochemical analyses reveal a distinctive mechanism for K+ selectivity; rather than forming the symmetrical filter of canonical K+ channels achieving both selectivity and dehydration, instead, three extracellular-vestibule residues within each monomer form a flexible asymmetric selectivity gate, while a distinct dehydration pathway extends intracellularly. Structural comparisons reveal a retinal-binding pocket that induces retinal rotation (accounting for HcKCR1/HcKCR2 spectral differences), and design of corresponding KCR variants with increased K+ selectivity (KALI-1/KALI-2) provides key advantages for optogenetic inhibition in vitro and in vivo. Thus, discovery of a mechanism for ion-channel K+ selectivity also provides a framework for next-generation optogenetics.


Assuntos
Channelrhodopsins , Rhinosporidium , Humanos , Channelrhodopsins/química , Channelrhodopsins/genética , Channelrhodopsins/metabolismo , Channelrhodopsins/ultraestrutura , Microscopia Crioeletrônica , Canais Iônicos , Potássio/metabolismo , Rhinosporidium/química
17.
Nat Commun ; 14(1): 4365, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37474513

RESUMO

Kalium channelrhodopsin 1 from Hyphochytrium catenoides (HcKCR1) is a light-gated channel used for optogenetic silencing of mammalian neurons. It selects K+ over Na+ in the absence of the canonical tetrameric K+ selectivity filter found universally in voltage- and ligand-gated channels. The genome of H. catenoides also encodes a highly homologous cation channelrhodopsin (HcCCR), a Na+ channel with >100-fold larger Na+ to K+ permeability ratio. Here, we use cryo-electron microscopy to determine atomic structures of these two channels embedded in peptidiscs to elucidate structural foundations of their dramatically different cation selectivity. Together with structure-guided mutagenesis, we show that K+ versus Na+ selectivity is determined at two distinct sites on the putative ion conduction pathway: in a patch of critical residues in the intracellular segment (Leu69/Phe69, Ile73/Ser73 and Asp116) and within a cluster of aromatic residues in the extracellular segment (primarily, Trp102 and Tyr222). The two filters are on the opposite sides of the photoactive site involved in channel gating.


Assuntos
Mamíferos , Animais , Channelrhodopsins/genética , Microscopia Crioeletrônica , Cátions/metabolismo , Mamíferos/metabolismo
18.
Neuropharmacology ; 238: 109651, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37414332

RESUMO

Disruption of synaptic function is believed to represent a common pathway contributing to cognitive decline during aging. Optogenetics is a prodigious tool for studying relationships between function and synaptic circuitry but models utilizing viral vectors present limitations. Careful characterization of the functionality of channel rhodopsin in transgenic models is crucial for determining whether they can be used across aging. This includes verifying the light sensitivity of the protein and confirming its ability to generate action potentials in response to light stimulation. We combined in vitro optogenetic methodology and a reduced synaptic preparation of acutely isolated neurons to determine if the ChR2(H134R)-eYFP vGAT mouse model is well-suited for aging studies. We used neurons from young (2-6 mo), middle-aged (10-14 mo) and aged (17-25 mo) bacterial artificial chromosome (BAC) transgenic mouse line with stable expression of the channelrhodopsin-2 (ChR2) variant H134R in GABAergic cell populations. Cellular physiology and calcium dynamics were assessed in basal forebrain (BF) neurons using patch-clamp recording and fura-2 microfluorimetry, alongside 470 nm light stimulation of the transgenic ChR2 channel to characterize a wide array of physiological functions known to decline with age. We found ChR2 expression is functionally maintained across aging, while spontaneous and optically evoked inhibitory postsynaptic currents, and quantal content were decreased. Aged mice also showed an increase in intracellular calcium buffering. These results, which are on par with previous observations, demonstrate that the optogenetic vGAT BAC mouse model is well-suited for investigating age-related changes in calcium signaling and synaptic transmission.


Assuntos
Optogenética , Rodopsina , Camundongos , Animais , Rodopsina/genética , Rodopsina/metabolismo , Optogenética/métodos , Cálcio/metabolismo , Transmissão Sináptica , Camundongos Transgênicos , Envelhecimento , Homeostase , Channelrhodopsins/genética , Channelrhodopsins/metabolismo
19.
Stroke ; 54(8): 2135-2144, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37309687

RESUMO

BACKGROUND: Cerebral microvascular obstruction is critically involved in recurrent stroke and decreased cerebral blood flow with age. The obstruction must occur in the capillary with a greater resistance to perfusion pressure through the microvascular networks. However, little is known about the relationship between capillary size and embolism formation. This study aimed to determine whether the capillary lumen space contributes to the development of microcirculation embolism. METHODS: To spatiotemporally manipulate capillary diameters in vivo, transgenic mice expressing the light-gated cation channel protein ChR2 (channelrhodopsin-2) in mural cells were used. The spatiotemporal changes in the regional cerebral blood flow in response to the photoactivation of ChR2 mural cells were first characterized using laser speckle flowgraphy. Capillary responses to optimized photostimulation were then examined in vivo using 2-photon microscopy. Finally, microcirculation embolism due to intravenously injected fluorescent microbeads was compared under conditions with or without photoactivation of ChR2 mural cells. RESULTS: Following transcranial photostimulation, the stimulation intensity-dependent decrease in cerebral blood flow centered at the irradiation was observed (14%-49% decreases relative to the baseline). The cerebrovascular response to photostimulation showed significant constriction of the cerebral arteries and capillaries but not of the veins. As a result of vasoconstriction, a temporal stall of red blood cell flow occurred in the capillaries of the venous sides. The 2-photon excitation of a single ChR2 pericyte demonstrated the partial shrinkage of capillaries (7% relative to the baseline) around the stimulated cell. With the intravenous injection of microbeads, the occurrence of microcirculation embolism was significantly enhanced (11% increases compared to the control) with photostimulation. CONCLUSIONS: Capillary narrowing increases the risk of developing microcirculation embolism in the venous sides of the cerebral capillaries.


Assuntos
Encéfalo , Capilares , Circulação Cerebrovascular , Embolia , Microcirculação , Animais , Camundongos , Encéfalo/irrigação sanguínea , Capilares/patologia , Capilares/fisiopatologia , Channelrhodopsins/genética , Channelrhodopsins/metabolismo , Embolia/patologia , Embolia/fisiopatologia , Lasers , Camundongos Transgênicos , Microscopia de Fluorescência por Excitação Multifotônica , Pericitos , Acidente Vascular Cerebral , Vasoconstrição
20.
Plant Cell Environ ; 46(9): 2778-2793, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37381151

RESUMO

Oriented movement (phototaxis) is an efficient way to optimize light-driven processes and to avoid photodamage for motile algae. In Chlamydomonas the receptors for phototaxis are the channelrhodopsins ChR1 and ChR2. Both are directly light-gated, plasma membrane-localized cation channels. To optimally adjust its overall light-dependent responses, Chlamydomonas must tightly control the ChRs cellular abundance and integrate their activities into its general photoprotective network. How this is achieved is largely unknown. Here we show that the ChR1 protein level decreases upon illumination in a light-intensity and quality-dependent manner, whereas it is stable in prolonged darkness. Analysis of knockout strains of six major photoreceptors absorbing in the blue-violet range, which is most effective in evoking ChR1 degradation, revealed that only phototropin (PHOT) is involved. Notably, ChR2 degradation was normal in a ΔPHOT strain. Further, our results indicate that a COP1-SPA1 E3 ubiquitin ligase, the transcription factor Hy5 as well as changes in the cellular redox poise and cyclic nucleotide levels are additional components involved in this light acclimation response of Chlamydomonas. Our data highlight the presence of an adaptive framework connecting phototaxis with general photoprotective mechanisms via the use of overlapping signaling components already at the level of the primary photoreceptor.


Assuntos
Chlamydomonas reinhardtii , Chlamydomonas , Channelrhodopsins/genética , Channelrhodopsins/metabolismo , Chlamydomonas reinhardtii/metabolismo , Luz , Chlamydomonas/genética , Transdução de Sinais/fisiologia , Canais Iônicos/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...